
COOL Syntax Manual
For Domain-Specific Language Programmers

First Edition

CHAPTER 1

FUNCTION

1 Declaration and Invocation . . 2
2 Expression-Returning Func-

tion and Value-Returning
Function 2

3 Chain-of-Logic 4

COOL features a clean, parenthesis-free syn-
tax. Rules are presented in the form of func-
tions, which are central to COOL. Mastering
writing COOL functions will unlock the pow-
erful potential of Domain-Specific Language
(DSL) programming.

1

Function 2

1 Declaration and Invocation

In COOL, a function consists of a function declaration and a body. A function representing
addition can be defined as Code 1.1:

Code 1.1: Function Declaration

@add(a,b){
return:a+b;

}

where @ modifies the subsequent add(a,b) as a function declaration rather than a function
call. We need to remove @ when calling a function, as shown in Code 1.2:

Code 1.2: Function Invocation

add(1,2);

Functions prioritize passing references to actual parameters rather than making copies.
This practice promotes efficiency and clarity in function calls:

Code 1.3: Reference Passing in Function Invocation

@add (a) to (b){
b = b+a;

}
new:x = 0;
add (1) to (x);

In Code 1.3, when add (1) to (x) is executed, the value of x is increased by 1 as a result
of the operations defined in the add (a) to (b) function. Notably, function parameters can
be embedded directly within the function name string, enhancing the expressiveness of the
code.

2 Expression-Returning Function and Value-Returning Func-
tion

COOL functions can be divided into two categories according to whether they return an
expression or a value. Expression-returning functions serve as tree operation rules in DSL
reasoning and are called by the DSL solver automatically, while value-returning functions
generate computed data, and programmers can invoke them directly.

Difference: Expression-returning functions are declared with the attribute expr, while
value-returning functions are not.

Function 3

2.1 Expression-Returning Function

Code 2.1 is an expression-returning function, describing the inverse operation of the distribu-
tive law of multiplication:

Code 2.1: Expression-Returning Function

expr:@{a*c+b*c}{
return:(a+b)*c;

}

Where the pair of curly braces immediately following @ delimits a scope termed as func-
tion declaration scope. And the internal expression within it is termed as function
declaration expression. In fact, in Code 1.1, the function name is also in its function
declaration scope, but the curly brackets on the scope boundary are omitted for writing
convenience.

2.2 Forward Function and Inverse Function

Value-returning functions can be further categorized into forward functions and inverse func-
tions, depending on whether the function has undetermined input or undetermined output:

• Forward Function: A forward function is characterized by having predetermined
input parameters, while its return value remains undetermined. The invocation process
of a forward function involves deducing the return value based on the provided input
parameters. For instance, consider Code 1.1.

• Inverse Function: Conversely, an inverse function has a determined return value but
contains input parameters with values that are yet to be defined (hole). The execution
process of an inverse function involves using the known return value and fixed input
parameters to calculate the undetermined input parameters. For example, Code 2.2
illustrates an inverse function required to compute the roots of a quadratic equation.

Code 2.2: Inverse Function

@{a*$xˆ2+b*x+c}{
new:x1 = (-b + (bˆ2 - 4*a*(c - ans))ˆ0.5)/(2*a);
new:x2 = (-b - (bˆ2 - 4*a*(c - ans))ˆ0.5)/(2*a);
x = {x1, x2};

}

In Code 2.2, the $ symbol indicates that the parameter x’s value is yet to be determined in
the expression. For a variable that appears multiple times in an expression, the $ decoration
is required only once. Additionally, the variable ans represents a known return value, which
can be accessed within the function body.

When calling an inverse function, we need to specify the undetermined variable using the
$ decoration. For example, Code 2.3:

Function 4

Code 2.3: Solving a Quadratic Equation where x is Unknown

2*$xˆ2 - 9*x + 7 == 0;

COOL supports automatically inferring the inverse function based on the corresponding
forward function. This process is illustrated in Code 2.4:

Code 2.4: Automatic Function Inversion

@price of (a) kg apple unit price (b){
return:a*b;

=>@apple unit price (b) for ($a) kg;

Where => indicates derivation, signifying we want the solver to generate the logic of
function @apple unit price (b) for ($a) kg based on @price of (a) kg apple unit
price (b). It is important to ensure that the parameter identifiers for the derived function

— (a, b) — remain consistent with those of the original function.
Furthermore, Code 2.5 demonstrates that COOL supports the inversion of multi-step

forward functions that involve intermediate variables, provided that the functions necessary
for each step’s inversion have been defined:

Code 2.5: Multi-Step Function Inversion

@{a * $xˆ2 + b * x + c} {...}
@{$x + b} {...}
@{$x == b} {...}
...
@forward(x, y) {

new: a = x + y;
$x + 1 == y;
new: z = 0;
3 * $xˆ2 + x * z + y == 100;
return: a + x + z;

} => @inverse($x, y);

3 Chain-of-Logic

The Chain-of-Logic is a framework designed for managing function invocations, utilizing
heuristic vectors and keywords.

• Heuristic Vector: Heuristic Vectors facilitate the segmentation of function calls
within the same scope (such as a class or library) into multiple stages. Functions
that are modified by a specific heuristic vector can only be invoked in the stage dic-
tated by the non-zero bits of that vector. For example, in Code 3.1, the functions

Function 5

modified by the heuristic vector (9) and (0, 0, 5) can only be called in Stage 1 and
Stage 3 respectively. The non-zero values within heuristic vectors represent rewards
associated with function invocations at different stages, influencing the priority and
frequency with which the function is called during the reasoning process of the solver.

• Keyword: Chain-of-Logic keywords include return, logicjump, and abort, which
control the flow of function calls by managing the stage advancement, conditional jump-
ing, and termination, respectively.

Code 3.1: Family Relationship Reasoning with Chain-of-Logic

//Stage 1: Separate Relations and Genders
expr:@(9){(a) is (b)s brother}{

return:(a) is male & (a) is (b)s sibling & (b) is (a)s sibling;
}
...
//Stage 3: Reason Indirect Relations
expr:@(0,0,5){(a) is (b)s sibling}{

if(a == b){
abort;

}
if(this expr.exist subexpr{(a) is male} == false && this expr

.exist subexpr{ (a) is female } == false){
logicjump(1);

}
placeholder:p1;
while(this expr .find subexpr{ (p1) is (a)s sibling }){

if(this expr.exist subexpr{ (p1) is (b)s sibling } == false
&& p1 != b){

return: (a) is (b)s sibling & (p1) is (b)s sibling;
}
p1.reset();

}
p1.reset();
...

}
...

In Code 3.1, the logic of the second function asserts that if a and b are siblings, how the
relationships of b are explored based on those of a:

1. First, the reasoning fails if a is found to equal b, prompting an exit with abort.

2. Second, the reasoning stage will jump to Stage 1 through logicjump(1) when the
gender of a is not directly known.

Function 6

3. After that, if p1 is identified as a sibling of a, and it differs from b with an undetermined
relationship to b, then p1 can be concluded to be a sibling of b.

In this context, p1 serves as a placeholder for pattern matching within the expression, while
this expr refers to the expression impacted by the expression-returning function. Both
find subexpr{expression} and exist subexpr{expression} perform pattern matching
but differ in their functionality: the former includes an internal iterator, enabling traversal
through matches. The reset function is used to revert the placeholder to its initial state.

(For detailed usage, please refer to the paper COOL: Efficient and Reliable Chain-Oriented
Objective Logic with Neural Networks Feedback Ccontrol for Program Synthesis.)

coolang.org
coolang.org

CHAPTER 2

VERIABLE

1 Declaration and Type 8
2 Access 8

This chapter introduces the concept of vari-
ables in COOL, highlighting their declara-
tion, types, and access. Understanding how
variables operate is essential for effective pro-
gramming in COOL, as it lays the foundation
for data manipulation and function execu-
tion within the language.

7

Veriable 8

1 Declaration and Type

Variables in COOL must be declared with new or a specified type before use. During the
life cycle of a variable, COOL doesn’t allow implicit type conversion, therefore the type of
a variable is determined by the most recent value assigned to it. An example of variable
declaration, type query, and assignment is shown in Code 1.1:

Code 1.1: Variable Declaration and Type

new:a;
a.typename–>"#FILE(SCREEN)"; //"number"
a = "hello world";
a.typename–>"#FILE(SCREEN)"; //"string"
string:b = "123";
a = b.toNum();
a.typename–>"#FILE(SCREEN)"; //"number"

In Code 1.1, we can observe that variable declarations primarily establish the initial value
of the variable. When a variable is declared using the new, it defaults to a floating-point value
of zero. The typename is utilized to query the current type of the variable, while the -->
operator is used for exporting data to the file system. COOL also offers basic type conversion
functions, including toInt, toNum, and toStrg.

2 Access

Variables can be accessed from their declaration until the end of their defined scope. When
an expression needs to refer to a variable, it prioritizes the variable in the current scope. To
alter this behavior, we can utilize the out modifier, which allows expressions to reference
variables from the upper scope. For example, see Code 2.1:

Code 2.1: Variable Access
new:a = 1;
{

new:a = 0;
a = out:a+1;

}

In this example, the final value of a defined in the inner scope is 2.
When the out modifier is applied in a function declaration scope, the parameter no longer

serves as a formal parameter but rather as an actual parameter external to the function, as
illustrated in Code 2.2:

Veriable 9

Code 2.2: “out” in Function Declaration
new:pi;
expr:@{sin(out:pi/2-a)}{

return:cos(a);
}

Where the function represents the trigonometric transformation sin(pi/2 - x) = cos(x),
and out:pi in the function declaration refers to the global variable pi, not a formal param-
eter.

CHAPTER 3

CONDITIONAL STATEMENT

1 Branching 11
2 Loop 11

In this section, we will explore the condi-
tional statements in COOL, which include
branching and loop structures providing es-
sential control flow capabilities.

10

Conditional Statement 11

1 Branching

The branching structure in COOL allows for conditional execution of code blocks, as shown
in Code 1.1:

Code 1.1: “If-Else” Branching

if(a == 0){
...

} elif (a > 0){
...

} else {
...

}

2 Loop

COOL supports the "while" loop structure, as demonstrated in Code 2.1:

Code 2.1: “While” Loop

while(a > 0){
++a;
...
if(a % 2 == 0){

continue;
}
...
if(a > 100){

break;
}
...

}

Within this loop, the continue statement is used to skip the current iteration, while the
break statement exits the loop.

CHAPTER 4

ENCAPSULATION

1 Library 13
2 Class 13

Encapsulation is a key concept that al-
lows programmers to group multiple DSLs
into libraries and classes, which can be eas-
ily loaded and utilized through specific in-
structions. This promotes modularity and
reusability in programming.

12

Encapsulation 13

1 Library

To facilitate the management of DSLs, programmers can encapsulate multiple DSLs into
libraries and call them using the load instruction, as demonstrated in Code 1.1:

Code 1.1: Library Loading

#load(quadratic) // Load the DSL library for quadratic solving
#load(family) // Load the DSL library for family relationship

reasoning
new:x = 1;
$xˆ2 - 4*x == 6;
...
new:relation = "";
new:Lynn = "Lynn";
new:Joshua = "Joshua";
new:Don = "Don";
new:Dolores = "Dolores";
(Joshua) is (Lynn)s husband & (Don) is (Joshua)s son & (Dolores) is

(Don)s wife & (Dolores) is (Lynn)s ($relation);
...

2 Class

When developing DSLs with COOL, we can encapsulate related functions (rules) for solving
similar problems within classes. This structure allows us to reuse, modify, and expand
their code more flexibly through inheritance, promoting better organization and modular
development of complex programs. 1

2.1 Definition

A class in COOL consists of a declaration with class followed by its body, which contains
the scope of the class. This is illustrated in Code 2.1:

1Currently, Object-oriented programming in COOL is not fully compatible with Chain-of-Logic.

Encapsulation 14

Code 2.1: Variable Access

class:OperationLaw {
expr:@{$a == $b}{

return:a - b == 0;
}
...

}
class:QuadraticEquation {

@{a * $xˆ2 + b * x + c}{...}
}

Where we define two classes named OperationLaw and QuadraticEquation.

2.2 Inheritance

Classes in COOL can inherit from other classes, allowing them to access member functions
and variables from their parent classes. See Code 2.2:

Code 2.2: Inheritance

class:MainProcess << OperationLaw, QuadraticEquation {
new:x = 1;
@problem() {

2 * $xˆ2 + 4 * x == 100;
x –> "#FILE(SCREEN)";

}
}

In this code, the class MainProcess inherits classes OperationLaw and QuadraticEquation,
where the << operator indicates inheritance. Besides, the members in OperationLaw are ac-
cessed first, which is consistent with the inheritance order (left to right).

2.3 Instantiation

Instances of a class are created as variable declarations with class name as the type name,
as shown in Code 2.3:

Code 2.3: Instantiation
MainProcess:m;

The instantiation process behaves similarly to a function call. Upon entering the class’s
scope, an activation record is created, and the code within the scope executes sequentially.
However, when exiting the class scope, this activation record is retained as the value of the
corresponding instance rather than being destroyed.

Encapsulation 15

2.4 Accessing Members

Members of an instance can be accessed using the . operator, enabling us to reach member
variables or invoke member functions, as illustrated in Code 2.4:

Code 2.4: Accessing Members

m.x = 3;
m.solveProblem();

CHAPTER 5

CONTAINER

1 Initialization 17
2 Operation 17

COOL enhances the management and or-
ganization of collections by packaging C++
containers, which include lists, maps, mul-
timaps, sets, and multisets.

16

Container 17

1 Initialization

Containers in COOL can be initialized using specific functions:

• map(): Creates and initializes an empty map.

• multimap(): Creates and initializes an empty multimap.

• set(): Creates and initializes an empty set.

• multiset(): Creates and initializes an empty multiset.

• {x,...}: Initializes a list with the specified values.

2 Operation

COOL supports a comprehensive set of operations to facilitate container manipulation:

2.1 Pop

• x.popFront(): Removes the first element (header) from the container. This operation
can be applied to both lists and strings.

• x.popBack(): Removes the last element (tail) from the container, applicable to lists
and strings.

2.2 Push

• x.pushFront(element): Adds an element to the front (head) of the container. This
operation is applicable to both lists and strings.

• x.pushBack(element): Adds an element to the back (tail) of the container, usable
with lists and strings.

2.3 Insert

• x.insert(element): Inserts a specific element at the end of the container; applies to
sets, multisets, or strings.

• x.insert({key, value}): Adds a key-value pair to the container, applicable for maps
and multimaps.

• x.insert({position, element}): Inserts an element at a specified position within
the container; suitable for lists and strings.

Container 18

2.4 Erase

• x.erase(position): Removes the element at the specified position in the container,
applicable to lists and strings.

• x.erase(key): Deletes the key-value pair associated with a specified key, applicable
for maps and multimaps.

• x.erase(element): Removes a specific element from the container, applicable for sets
or multisets.

2.5 Find

• x.find(element): Searches for the position of a specified element in the container,
applicable to lists, sets, multisets, and strings.

• x.find(key): Retrieves the value corresponding to a specified key, applicable to maps
and multimaps.

2.6 Count

• x.count(element): Determines the number of occurrences of an element in the con-
tainer, applicable to lists, sets, multisets, and strings.

• x.count(key): Finds the number of occurrences of a specified key in the container,
applicable to maps and multimaps.

2.7 Indexing

• x[position]: Returns a reference or a copy of the element located at the specified
position. This operation can be performed on lists or strings. For nested indexing,
x[1, 2, 3] is equivalent to x[1][2][3].

• x[key]: Provides a reference to the value associated with the specified key, applicable
for maps.

2.8 Clear

• x.clear(): Empties all elements from a container or string, effectively resetting it to
an empty state.

2.9 Length

• x.length: Retrieves the total number of elements in the container or the length of a
string.

Container 19

2.10 Container Type Query

• x.typename: Returns the type name of the container.

CHAPTER 6

OPERATOR

1 Built-in Operator 21
2 Custom Operator 21

This chapter provides an overview of the
built-in and custom operators, which pro-
vide essential functionality for coding and
program execution in COOL.

20

Operator 21

1 Built-in Operator

COOL features a variety of operators with different precedences and uses. Below is a summary
of the built-in operators, their precedence, and descriptions:

Precedence Operator Description Grouping

Highest . Member access →
User-defined

operator
&, |
$ Parameters are undetermined No continuous use
Parameters are either to be

undetermined or confirmed
No continuous use

: Declaration ←
[] Subscript access →
! Logical NOT ←

- -, ++ Prefix increment/decrement No continuous use
- -, ++ Postfix increment/decrement No continuous use

- Minus sign ←
^ Exponentiation or intersection →

*, /, % Multiply/divide/mod →
+, - Add or take union/subtract or

take difference
→

>, <, <=, >= Comparison operators →
==, != Equality/inequality →
&&, || Logical AND/logical OR

=, +=, -=,
*=, /=, %=

(Compound) assignment

- -> Output →
< < Inheritance No continuous use
= > Derivation No continuous use

, Comma separator →
; Semicolon separator →
@ Function declaration No continuous use

Lowest @() Function declaration with a
heuristic vector

No continuous use

2 Custom Operator

In addition to built-in operators, COOL allows us to define custom operators with different
associativity to suit specific programming needs:

Operator 22

• ~*: This operator is left-associative and can be either unary or binary; it must have an
operand on the right.

• ~~*: This operator is right-associative and can be either unary or binary; it must also
have an operand on the right.

• ~~~*: This operator is left-associative and is strictly unary; it must have an operand
on the left.

Note that for defining custom operators, * can include any ASCII symbols except for double
quotes, commas, various types of brackets, @, #, and ~.

CHAPTER 7

MISCELLANEOUS

1 Comment Statement 24
This section introduces syntax that assists
programming with COOL.

23

Miscellaneous 24

1 Comment Statement

In COOL, the way to add comments is consistent with that of the C programming language
(Code 1.1). The two styles of comments provided are as follows:

• Single-line Comment: A single-line comment begins with // and extends to the end
of the line.

• Multi-line Comment: A multi-line comment begins with /* and ends with */. This
style can encompass one or more lines.

Code 1.1: Comment

// This is a single-line comment
...
/* This is a multi-line comment.
It can span multiple lines. */
...

	Function
	Declaration and Invocation
	Expression-Returning Function and Value-Returning Function
	Chain-of-Logic

	Veriable
	Declaration and Type
	Access

	Conditional Statement
	Branching
	Loop

	Encapsulation
	Library
	Class

	Container
	Initialization
	Operation

	Operator
	Built-in Operator
	Custom Operator

	Miscellaneous
	Comment Statement

