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ABSTRACT

Program synthesis methods, whether formal or neural-based, lack fine-grained
control and flexible modularity, which limits their adaptation to complex soft-
ware development. These limitations stem from rigid Domain-Specific Language
(DSL) frameworks and neural network incorrect predictions. To this end, we pro-
pose the Chain of Logic (CoL), which organizes synthesis stages into a chain and
provides precise heuristic control to guide the synthesis process. Furthermore,
by integrating neural networks with libraries and introducing a Neural Network
Feedback Control (NNFC) mechanism, our approach modularizes synthesis and
mitigates the impact of neural network mispredictions. Experiments on relational
and symbolic synthesis tasks show that CoL significantly enhances the efficiency
and reliability of DSL program synthesis across multiple metrics. Specifically,
CoL improves accuracy by 70% while reducing tree operations by 91% and time
by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduc-
tion in tree operations under challenging conditions such as insufficient training
data, increased difficulty, and multidomain synthesis. These improvements con-
firm COOL as a highly efficient and reliable program synthesis framework.

DSL  Framework CoL DSL + NNFC Framework (ours)

Failure

Input
(Charles) is (Lena)s son & (Wesley) is

(Charles)s father & (Francisco) is

(Wesley)s brother 

& (Francisco) is (Lena)s (?);

  Neural Network and Filter

DSL
son(x, y) -> parent(y, x), male(x)

parent(x, y):= child(y, x)

child(x,y) := parent(y, z), sibling(z,
x)

brother(x,y) := sibling(x, y), male(x)

result := remove_irrelevant(relations,
result)

···

Input
(Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is

(Wesley)s brother & (Francisco) is (Lena)s (?);

NNFC

Output
(Francisco) is (Lena)s (brother);

2 Reason Inverse Relations
(Heuristic) parent(x, y):= child(y, x)
···

3 Reason Indirect Relations
(Heuristic) child(x, y) := parent(y, z),
sibling(z, x)
···

1 Separate Relations and Genders
(Heuristic) son(x, y) -> child(x, y), male(x)
···

4 Recombine Relations and Genders, Eliminate
Irrelevant Relations
(Heuristic) brother(x, y) := sibling(x, y),
male(x)
(Heuristic) result := 
remove_irrelevant(relations, result)
···

CoL DSL

Detailed Rule

expr:@(0,7,3){(y) is (x)s
child}{
  if(this expr.exist
subexpr{(x) is (y)s parent}
== false){
    return: (y) is (x)s
child & (x) is (y)s parent;
  }
    abort;
}

Figure 1: Chain-of-Logic (highlighted part) organizes the rule application into a structured sequence,
enhancing the Domain-Specific Language (DSL) framework’s ability to handle complex tasks. The
Neural Network Feedback Control mechanism (red path) utilizes data during synthesis to improve
the performance of the synthesis process dynamically.
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1 INTRODUCTION
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Figure 2: Performance Enhancements with CoL
and NNFC. The CoL DSL surpasses non-CoL
DSL in all metrics. While NNFC increases com-
putation time due to neural network calls, it signif-
icantly boosts accuracy in dynamic experiments,
enhancing reliability.

Program synthesis is becoming increasingly
important in computer science for enhancing
development efficiency Gulwani et al. (2017);
Jin et al. (2024). Despite the effectiveness
of current state-of-the-art methods in dealing
with simple tasks, the complexity of modern
software demands more advanced and sophis-
ticated approaches Sobania et al. (2022).

To address these challenges, an effective solu-
tion must offer programmers fine-grained con-
trol and flexible modularity in the synthesis pro-
cess Groner et al. (2014); Sullivan et al. (2001).
First, fine-grained control tailors the synthesis
path to specific tasks, ensuring the interpretabil-
ity of the synthesis process. Secondly, flexible
modularity enhances reusability and guarantees
the quality of the entire program by ensuring
the correctness of the modules Le et al. (2023).

However, these principles are often overlooked
in current state-of-the-art program synthesis
methods. For example, symbolic approaches
such as SyGus Alur et al. (2013), Escher Al-
barghouthi et al. (2013), and FlashFill++ Cam-
bronero et al. (2023) struggle to scale to
complex tasks because their traversal-based
Domain-Specific Language (DSL) framework
lacks fine-grained control. A compensatory
strategy involves using neural networks for
guidance or search space pruning, as seen in projects such as Neo Feng et al. (2018), Lambd-
aBeam Shi et al. (2023a), Bustle Odena et al. (2020), DreamCoder Ellis et al. (2023), and
Algo Zhang et al. (2023), but the control logic remains disconnected from the programmer. On
the other hand, LLM-based projects like CodeGen Nijkamp et al. (2022), CodeX Finnie-Ansley
et al. (2022), and Code Llama Roziere et al. (2023) allow programmers to control synthesis through
prompt interactions. However, they lack modularity, as all tasks rely on the same LLM, making the
logic vulnerable to biases in training data and leading to subtle errors that require manual verifica-
tion. In summary, there is an urgent need for fine-grained control and flexible modularity to ensure
the efficiency and reliability of these methods when tackling complex synthesis tasks.

In this paper, following the principles of fine-grained control and flexible modularity, we present
COOL (Chain-Oriented Objective Logic), a neural-symbolic framework for complex program
synthesis. At the core of our approach, we introduce the Chain-of-Logic (CoL), which integrates
the functions of the activity diagram to enable fine-grained control Gomaa (2011). As illustrated in
Figure 1, programmers can precisely organize rules into multiple stages and manage control flow
using heuristics and keywords. Additionally, we leverage neural networks on top of CoL to dynam-
ically fine-tune the synthesis process. For this purpose, we introduce Neural Network Feedback
Control (NNFC) Turan & Jäschke (2024), which enhances future synthesis by learning from data
generated during synthesis and suppresses neural network incorrect predictions through filtering. To
ensure modularity, each neural network is bound with a specific CoL DSL, stored in separate library
files for clear isolation and easy reuse. Thus, through the combination of CoL and NNFC, COOL
achieves high efficiency and reliability when tackling complex synthesis tasks.

We conduct static experiments (constant domain and difficulty tasks, using pre-trained neural net-
works without further training) and dynamic experiments (mutative domain and difficulty tasks,
where neural networks are created and continuously trained during the experiment) to evaluate the
impact of CoL and NNFC on program synthesis. Figure 2 illustrates the significant improvements
achieved by CoL and NNFC: In static experiments, CoL improves accuracy by 70%, while reducing
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Stage
1

Separate Relations and 
Genders

Stage
2 Reason Inverse Relations

Stage
3 Reason Indirect Relations

Stage
4

Recombine Relations and 
Genders, Eliminate Irrelevant 
Relations

To avoid wasting resources on partial programs with errors, such as incorrect

relationships or cyclic rule applications, we can actively terminate the exploration

using the keyword abort:

(0,0,0,6) sibling(x,x)->abort
(0,0,0,6) child(x,y),child(x,y),...->abort

When an indirect relationship is inferred at stage 3, we can use keyword 

 logicjump(2) to return to stage 2. This allows the DSL to infer new relationships based

on the previously inferred one, recursively synthesizing the complete relationship graph: 

(0,0,5,0) logicjump(2):child(x, y) := parent(y, z), sibling(z, x)
(0,0,5,0) logicjump(2):sibling(x, y) := child(y, z), child(x, z)

End (Francisco) is (Lena)s (brother);

Return is the basic keyword to advance the synthesis process stage-by-stage,   

following the Chain-of-Logic: 

(3,0,0,0) son(x,y)->return:child(x, y), male(x)
(3,0,0,0) father(x,y)->return:parent(x, y), male(x)

Managed by return Managed by logicjump(n) Managed by abort

Start (Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is (Wesley)s brother & (Francisco) is (Lena)s (?);

Figure 3: Chain-of-Logic. In this illustrative CoL DSL, each node represents a stage or activity
where a set of rules can be applied to generate partial programs. The flow between stages is managed
by keywords return, logicjump(n), and abort, allowing for the implementation of complex control
flow in program synthesis.

tree operations by 91% and time by 95%. In dynamic experiments, NNFC further increases the
accuracy by 6%, with a 64% reduction in tree operations. The results underscore that achieving
fine-grained control and flexible modularity can greatly improve efficiency and reliability in DSL
program synthesis.

The contributions of our work are as follows:

1. We propose the Chain-of-Logic (CoL), which enables fine-grained control in complex
program synthesis by structuring rule applications into distinct and manageable stages.

2. We further introduce Neural Network Feedback Control (NNFC), a dynamic correction
mechanism for CoL that continuously learns from the synthesis process, ensuring modu-
larity by pairing neural networks with specific CoL DSLs.

3. We present COOL, an efficient and reliable neural-symbolic framework for complex pro-
gram synthesis, combining the strengths of CoL and NNFC to achieve fine-grained control
and flexible modularity in DSL-based synthesis.

2 METHOD

In this section, we detail the implementation of CoL and NNFC, outlining the principles that ensure
high efficiency and reliability for complex program synthesis tasks.

2.1 CHAIN-OF-LOGIC (COL)

Activity diagrams, widely used in software engineering, effectively describe how an initial state
transitions to a final state through multiple stages. This feature aligns with the DSL-based program

3
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Input
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from CoL DSL 
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Neural Network Feedback Control

CoL DSL

Detailed Structure of the Feedback Loop

&

&

Figure 4: Neural Network Feedback Control. The left side illustrates the complete control loop of
NNFC. In the forward flow (green path), heuristic values u guide the synthesis process as control
signals. In the feedback loop (red path), the DSNN (Domain-Specific Neural Network, the neural
network paired with a DSL) generates initial error signals e0 from partial programs y. These
singals are then filtered to produce high-quality error signals e1, which adjust the initial heuristic
values u0. In multidomain synthesis, the CoL DSL and DSNN from the self-domain use partner
domain information (dashed path) to clarify tasks and avoid competition, ensuring modularity. The
right side details the feedback loop: The DSNN comprises multiple neural networks coupled in
series via noise signals, with each network generating its own error signal e0, then these signals with
large discrepancies are filtered, retaining the final high-quality error signals e1.

synthesis process. A DSL, defined as a context-free grammar, converts partial programs with nonter-
minal symbols into complete programs by applying given rules. However, as the rule set grows, DSL
becomes inefficient in exploring partial programs. To enhance the efficiency of DSL, the Chain-of-
Logic, drawing inspiration from activity diagrams, organizes rule applications during synthesis into
a sequence of manageable stages, as illustrated in 3.

CoL improves the control flow of the DSL with two key features: heuristic vectors and keywords.
Heuristic vectors specify the stages where rules apply and their corresponding values. For example,
in Figure 1, a rule with the heuristic vector (0,7,3) is applicable in stages 2 and 3 with heuristic
values of 7 and 3, respectively. These vectors form the core of CoL’s control flow.

Second, CoL introduces three keywords—return, logicjump(n), and abort—to dynami-
cally choose the next stage during synthesis:

1. return: Ends the current rule, staying within current stage or advancing to following stages.

2. logicjump(n): Jumps directly to the stage n, enabling branching and loops within CoL.

3. abort: Terminates the current synthesis branch, pruning the search space.

In summary, CoL provides fine-grained control through heuristic vectors and keywords. This struc-
tured and detailed approach enhances the efficiency of DSL synthesis.

2.2 NEURAL NETWORK FEEDBACK CONTROL (NNFC)

While CoL enables programmers to fine-tune the synthesis process, the control flow may lack detail
or vary by task. To this end, Neural Network Feedback Control (NNFC) dynamically refines con-
trol flow through feedback from neural networks, improving precision and adaptability. However,
neural networks present the risk of generating incorrect predictions, threatening reliability.

4
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Therefore, a robust control flow in NNFC is crucial to ensuring overall performance. As illustrated
in Figure 4, NNFC enhances the CoL DSL in the following ways: In the forward flow, the Clipper
prioritizes control signals aligned with DSNN guidance by capping any inconsistent signals, while
the CoL DSL applies rules based on the adjusted heuristic values. Meanwhile, in the feedback loop,
the DSNN generates error signals from partial programs across domains. To suppress the impact of
mispredictions, the Filter refines these signals before they influence the forward flow.

The quality of the signals generated in the feedback loop directly determines the effectiveness of
NNFC. If the error signals are of poor quality, NNFC may not only fail to provide additional im-
provements but also degrade CoL DSL performance. We ensure the error signal quality through an
inner coupling structure within DSNN. As shown in Figure 4 (right), during synthesis tasks, DSNN
processes partial programs using a series of sequentially connected neural networks. Each neural
network takes both the partial programs and intermediate results from the preceding neural network
as input, generating its own predictions. When errors occur in earlier networks, they propagate
downstream as noise signals, amplifying at each stage. The difference in the outputs between these
neural networks is positively correlated with the accumulated error. To mitigate this, we set a thresh-
old to filter out signals with a significant difference in outputs. Finally, DSNN uses passed signals
to generate multi-head outputs to fine-tune the forward flow:

1. Task Detection Head (TDH): Improves modularity by determining whether the partial
program contains components that the CoL DSL can process.

2. Search Space Prune Head (SSPH): (Active when TDH is true) Evaluate the feasibility of
synthesizing the final complete program from the current partial program, and CoL DSL
will avoid exploring infeasible spaces.

3. Search Guidance Head (SGH): (Active when both TDH and SSPH are true) Guides the
CoL DSL in applying the most promising rules to the partial program.

By adopting filtering and multi-head outputs, the feedback loop delivers high-quality error signals
to the forward path, ensuring that NNFC enhances the synthesis process on top of CoL.

3 EXPERIMENTS

We conduct the experiments in two stages to evaluate the improvements introduced by CoL to DSL
and to assess how NNFC further enhances performance. First, we carry out static experiments
under fixed conditions, including task domain, difficulty level, and neural network. These controlled
conditions allow us to accurately measure CoL’s impact on performance. Next, we proceed with
dynamic experiments, where conditions vary throughout. This dynamic setup evaluates NNFC’s
ability to improve reliability under changing situations.

3.1 EXPERIMENTAL SETUP

Improvements of DSL by CoL and NNFC is evaluated across benchmarks using various metrics.

Benchmarks. We evaluate CoL and NNFC using relational and symbolic tasks with varying
difficulty levels, as detailed in Table 1. Specifically, the relational tasks are drawn from the
CLUTRR Sinha et al. (2019) dataset, where the goal is to synthesize programs that capture spe-
cific target relationships based on human common-sense reasoning. In contrast, the symbolic tasks
are generated by GPT Achiam et al. (2023). They involve synthesizing standard quadratic equation
programs from non-standard quadratic forms by performing manual calculation steps. Although

Table 1: Benchmark configurations. Relational benchmarks are divided into easy and difficult
groups based on the number of relationship edges, while symbolic benchmarks are based on the
number of nodes in the tree.

Benchmark Type Difficulty Level A Difficulty Level B
relational 300 tasks with 3 edges 200 tasks with 4 edges
symbolic 300 tasks with around 5 nodes 200 tasks with around 9 nodes

5
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these tasks are simple for humans, they serve as a straightforward demonstration of how fine-grained
control, derived from programmer expertise, can significantly improve program synthesis efficiency.

Metrics. Besides accuracy, we also focus on the following points: (1) CPU Overhead is assessed
by the number of tree operations required for synthesis. (2) Memory overhead is assessed by the
number of transformation pairs (a partial program paired with the rule to be applied)1. (3) GPU
Overhead is measured by the number of neural network invocations. (4) Time overhead is refer-
enced by the actual time spent on program synthesis tasks. (5) Filtering Performance is evaluated
by the attenuation ratio of invalid to passed neural network predictions.

Chain-of-Logic. We utilize the CoL approach to enhance DSL by making the synthesis process
more in line with human problem-solving strategies. For relational tasks, by mirroring the way hu-
mans typically reason about family relationships, CoL organizes the synthesis process into stages
illustrated in Figure 3. For symbolic tasks, CoL structures the DSL to follow the manual quadratic
equation simplification strategy, with stages such as expanding terms, extracting coefficients, per-
muting terms, and converting equations to standard form. The specific CoL DSL configurations are
shown in Table 2, where the significant differences in DSLs highlights the generality of CoL.

Table 2: CoL DSL configurations. The DSL for relational benchmarks has a limited search space and
shorter CoL, facing challenges from numerous production rules leading to larger trees. Conversely,
the DSL for symbolic benchmarks offers an unlimited search space with a longer CoL, but the many
permutation rules increase the risk of cyclic rule applications.

Benchmark Rules Length of CoL
Total Production

Rules
Reduction

Rules
Recursive

Rules
Permutation

Rules
relational 40 36 2 16 0 4
symbolic 55 17 26 3 11 7

Groups. We use multiple groups to comprehensively evaluate CoL and NNFC (as shown in Ta-
ble 3). First, in static experiments, we evaluate CoL by comparing DSL groups with and without CoL
enhancements. Second, to isolate the impact of heuristic vectors—both as guides and as structuring
tools for rule application—we create groups enhanced only by heuristic values. Third, we introduce
groups enhanced by neural networks to assess whether combining CoL with neural networks yields
better results and to explore the filtering effect of the inner coupling structure. In dynamic experi-

Table 3: Group configurations. Groups marked with ★ are the main experiments, those with ✩ are
for ablation and extended experiments, and the unmarked group is the baseline.

Group Experiment Pretrained
DSNN NNFC

Inner
Coupling
Structure

DSL static
✩DSL (Heuristic) static

★CoL DSL static, dynamic
✩DSL+NN static ✓

✩DSL (Heuristic)+NN static ✓
✩ CoL DSL+NN static ✓

✩CoL DSL+NNFC dynamic ✓
✩DSL+NN (Cp) static ✓ ✓

✩DSL(Heuristic)+NN (Cp) static ✓ ✓
✩CoL DSL+NN (Cp) static ✓ ✓
✩CoL DSL+NN (Cp) static ✓ ✓

★CoL DSL+NNFC (Cp) dynamic ✓ ✓

1Each partial program must be completed with at most 1000 transformation pairs, though this may exceed
1000 if additional tasks are generated during synthesis.
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ments, we design control groups with and without NNFC to evaluate its impact. Additionally, we
include a group without the inner coupling structure to confirm its necessity.

Environment. Experiments are carried out on a computer equipped with an Intel i7-14700 proces-
sor, a GTX 4070 GPU, and 48GB RAM.

3.2 STATIC EXPERIMENTS

We start with static experiments. With the task domain, difficulty level, and neural network condi-
tions unchanged in each group, a series of controlled experiments confirm that CoL has remarkably
boosted DSL program synthesis in all metrics.

The results in Table 4 clearly demonstrate that CoL significantly improves accuracy while min-
imizing overhead. Most notably, CoL improves the accuracy of the DSL from less than 50% to
100% across both relational and symbolic benchmarks. Additionally, CoL achieves remarkable re-
ductions in relational tasks, cutting tree operations by 90%, transformation pairs by 88%, and time
by 95%. Similarly, in symbolic tasks, CoL reduces tree operations by 92%, transformation pairs
by 96%, and time by 97%. These findings showcase CoL’s substantial impact on improving perfor-
mance across all key metrics.

Table 4: Static performance of DSL and CoL DSL for relational and symbolic tasks. CoL DSL
significantly outperforms DSL in all metrics.

Benchmark Group Accuracy
(%)

Avg. Tree
Operation

Avg. Trans-
formation

Pair

Avg. Time
Spent (s)

relational DSL 11.3 463.9 1432.2 9.43
CoL DSL 100.0 46.6 177.8 0.48

symbolic DSL 48.3 411.2 2285.3 3.31
CoL DSL 100.0 33.8 92.7 0.11

Further ablation and extension experiments clarify the sources of CoL’s enhancement, confirm CoL’s
effective integration with neural networks, and explore when filtering via inner coupling structures
is most beneficial. Our findings are as follows:

First, CoL’s enhancement stems from both heuristics and structured rule application stages.
As illustrated in Figure 5, the DSL (Heuristic) group outperforms the DSL group in most metrics,
and the CoL DSL group significantly surpasses DSL (Heuristic) in all metrics. Such results indicate
that CoL positively impacts synthesis by guiding and structuring rule application. Moreover, on top
of guidance, the structured rule application stages achieve greater improvement.

Second, integrating CoL with neural networks further improves the search efficiency. As
shown in Figure 5, despite additional GPU and time overhead, the top-performing CoL DSL + NN
group reduces tree operations by 43% and transformation pairs by 19% in relational tasks compared
to the CoL DSL group. In symbolic tasks, the CoL DSL + NN (Cp) group reduces tree operations by
64% and transformation pairs by 46%. The results showcase that neural networks can further narrow
the search space for program synthesis beyond CoL. Importantly, the group with the inner coupling
structure outperforms non-neural groups in both tasks. In contrast, the group without it presents an
accuracy decline in symbolic tasks, validating the structure’s role in improving reliability.

Third, the inner coupling structure is more effective when error tolerance is low. As indicated
in Figure 5, for symbolic tasks, CoL DSL-based groups with the inner coupling structure signifi-
cantly outperform those without it. However, for relational tasks and DSL-based groups (without
CoL or heuristic), those without such structure perform better. This difference indicates that the
filtering effect of the inner coupling structure comes at a cost: it filters out both incorrect and correct
predictions. So, its effectiveness depends on the positive impact of eliminating incorrect predic-
tions outweighing the loss of correct ones. Therefore, for relational tasks with a limited search
space and DSL-based groups with higher error tolerance, the cost of filtering outweighs the benefit.
However, in symbolic tasks, where avoiding errors is more critical, CoL DSL-based groups benefit
significantly from the inner coupling structure.
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Figure 5: Static performance on relational and symbolic tasks at difficulty level A. CoL DSL-based
groups outperform DSL (Heuristic) and DSL groups. Performance varies for DSNN-enhanced
groups with the inner coupling structure. Error bars show 95% confidence intervals across 6 batches.

3.3 DYNAMIC EXPERIMENTS

Static experiments confirm CoL’s improvements on DSL and its enhancement with neural networks.
However, real-world program synthesis involves varying task domains and difficulty, facing the risk
of neural network mispredictions due to underperformance. Therefore, we introduce these factors
in dynamic experiments to evaluate how NNFC further improves the performance of CoL DSL.

Table 5: Dynamic performance of CoL DSL and CoL DSL+NNFC(Cp). NNFC significantly im-
proves the dynamic performance of CoL DSL in accuracy, tree operations, and transformation pairs.

Bench-
mark Group Accuracy

(%)
Avg. Tree

Operation

Avg. Trans-
formation

Pair

Avg. Neural
Network

Invocation

Avg. Time
Spent (s)

relational CoL DSL 100.0 70.0 259.8 0 1.05
CoL DSL+NNFC (Cp) 100.0 54.6 224.5 21.7 2.08

symbolic CoL DSL 82.6 233.5 977.1 0 1.42
CoL DSL+NNFC (Cp) 99.4 50.3 222.2 21.6 1.12

multi-
domain

CoL DSL 97.5 115.2 367.6 0 0.99
CoL DSL+NNFC (Cp) 99.0 45.6 250.5 72.84 3.91
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The results in Table 5 confirm that NNFC significantly enhances the reliability of CoL DSL in
challenging conditions. As task difficulty increases and multidomain scenarios emerge, the accu-
racy of the CoL DSL group declines compared to its performance in static experiments. However,
the NNFC-enhanced group maintains an accuracy of at least 99%, demonstrating its strong reliabil-
ity in challenging situations. Additionally, compared with the original CoL DSL group, it reduces
tree operations by 22% and transformation pairs by 14%. For symbolic tasks, despite the added time
for neural network invocations, the NNFC-enhanced group still shortens the time spent by 21%.
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Figure 6: Dynamic performance differential to CoL DSL in singledomain tasks. The NNFC group
without the inner coupling structure shows 12 accuracy declines across 20 batches, while the group
with the structure shows none. Each batch consists of 50 tasks, and NNFC continuously trains
DSNNs using generated data after each batch, starting from scratch.

Further ablation experiments confirm that reliability provided by NNFC primarily stems from
the filtering effect of the inner coupling structure. As shown in Figures 6 and 7, the inner cou-
pling structure reduces the occurrence of accuracy declines due to DSNN mispredictions by 94%.
Additionally, the dynamic performance reveals how the inner coupling structure enhances NNFC:

In the scenarios where a DSNN underperforms due to issues such as insufficient training
data Mikołajczyk & Grochowski (2018) (as seen in Figure 6, tasks 51-100), inadequate general-
ization to more challenging tasks Yosinski et al. (2014); Wei et al. (2019) (Figure 6, tasks 301-350),
and catastrophic forgetting when tasks from a new domain are learned Kirkpatrick et al. (2017);
Van de Ven & Tolias (2019) (Figure 7, tasks 1-100), incorrect predictions lead the actual synthesis
path to deviate from the CoL, which in turn causes inefficiency and reduced accuracy. During these
phases, for NNFC with the inner coupling structure, the attenuation ratio spikes, indicating that a
large percentage of neural network predictions are filtered out. Consequently, the inner coupling
structure ensures that the synthesis process adheres to the CoL, effectively mitigating the negative
impact of DSNN mispredictions and enhancing reliability.
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Figure 7: Dynamic performance differential to CoL DSL in multidomain tasks. The NNFC group
without an inner coupling structure degrades across all 4 batches, while the group with the structure
experiences degradation only in the first batch. Each batch includes 50 relational and 50 symbolic
tasks, and DSNNs are continuously trained from those for tasks at difficulty level A in Figure 6.

As the DSNN improves and reaches a relatively stable state (as seen in Figure 6, tasks 101-300,
351-500, and Figure 7, tasks 101-400), the attenuation ratio shows a decreasing trend accordingly.
This adaptive adjustment demonstrates how the inner coupling structure dynamically regulates the
DSNN’s impact, leveraging neural network contributions while mitigating risks to ensure both effi-
ciency and reliability in program synthesis.

4 RELATED WORK

Neural Search Optimization: Neural networks are key for optimizing search in program synthesis.
Projects like Kalyan et al. (2018); Zhang et al. (2023) and Li et al. (2024) use neural networks to pro-
vide oracle-like guidance, while Neo Feng et al. (2018), Flashmeta Polozov & Gulwani (2015), and
Concord Chen et al. (2020) prune search spaces with infeasible partial programs. COOL employs
both strategies to enhance efficiency.

Multi-step Program Synthesis: Chain-of-Thought (CoT) Wei et al. (2022) enhances LLMs by
breaking tasks into subtasks. Projects like Zhou et al. (2022); Shi et al. (2023b) and Zheng et al.
(2023) use this in program synthesis. Compared to CoT, which directly decomposes tasks, CoL does
so indirectly by constraining rule applications.

Reinforcement Learning: Reinforcement learning improves neural agents in program synthesis
through feedback, as seen in Eberhardinger et al. (2023); Liu et al. (2024); Bunel et al. (2018),
Concord Chen et al. (2020), and Quiet-STaR Zelikman et al. (2024). NNFC similarly refines control
flow but serves an auxiliary role for programmer strategies in synthesis rather than dominating it.

5 CONCLUSION

We explored fine-grained control and flexible modularity for complex program synthesis through the
Chain-Oriented Objective Logic (COOL) framework. Inspired by activity charts and control theory,
we developed Chain-of-Logic (CoL) and Neural Network Feedback Control (NNFC) to achieve
these goals. Static and dynamic experiments across relational, symbolic, and multidomain tasks
demonstrated that COOL offers strong efficiency and reliability. We believe that continued research
and refinement of CoL and NNFC will inspire advancements not only in program synthesis but also
in broader areas of neural network reasoning.
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Evren Mert Turan and Johannes Jäschke. Closed-loop optimisation of neural networks for the design
of feedback policies under uncertainty. Journal of Process Control, 133:103144, 2024.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4840–4841, 2022.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. Advances in Neural Information Processing
Systems, 36:54769–54784, 2023.

Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In International
Conference on Machine Learning, pp. 42403–42419. PMLR, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RULE IN COL DSL

In addition to the heuristic vector and keywords, COOL extends the flexibility of the synthesis
process by enhancing DSL rules. These enhancements are exemplified in Figure 8, which clarifies
the rule introduced in Figure 1.

The body (premise) of a rule can contain either a

function name or any valid expression

The head (consequence) of

a rule can either be an

expression, indicated by the

modifier 'expr,' or a terminal

when the modifier is not

present.  Additional

attributes, such as type, can

be specified using other

modifiers.

COOL includes built-in

operations for accessing

information about partial

programs or specific

program fragments. 

COOL enables dynamic generation of rule heads using detailed logic.

Rule in COOL
expr:@(0,7,3){(y) is (x)s child}{
  if(this expr.exist subexpr{(x) is (y)s
parent} == false){
    return: (y) is (x)s child & (x) is

(y)s parent;
  }
    abort;
}

Figure 8: DSL rules in COOL. The framework allows for defining rule heads using expressions or
terminals, which are enhanced with modifiers for additional attributes. Rule bodies can incorporate
any valid expression or function name. Besides, COOL provides built-in operations for accessing
program fragment information and facilitates dynamic rule head generation.

B STAGE PROGRESSION DRIVEN BY HEURISTIC VECTORS

Let s denote the CoL stage, h donate the heuristic value, and n donate the length of CoL. A rule’s
heuristic vector can be mathematically represented as:

H ={(s0, h0), (s1, h1), . . . , (sn, hn)}, n ∈ N+ (1)

Upon applying a rule with heuristic vector H, the subsequent stage, snext, can only advance or remain
the same, and the next stage should be as close to the current stage as possible:

min snext such that ∃(snext, hnext) ∈ H and snext ≥ scurrent (2)

C NEURAL NETWORKS IN DSNN

COOL performs synthesis tasks using Three-Address Code (TAC), also utilized as input by DSNN.
TAC serves as an intermediate representation (IR), allowing program synthesis to be conducted
without the constraints of specific DSL syntax or the machine code format of the execution plat-
form Sujeeth et al. (2014). As TAC embodies both the graphical properties of a syntax tree and the
sequential properties of execution, the design of the neural network must be capable of capturing
these dual characteristics.

The detailed layer architecture of neural networks in DSNN is illustrated in Figure 9. The processing
flow consists of the following steps:

1. Embedding Node Features: We start by employing embedding layers with learning ca-
pabilities. These layers convert categorical inputs into dense, continuous vectors, which
enhances the stability and efficiency of subsequent processing layers Hrinchuk et al. (2019).
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DomainEmbedding (embedding_size=50, dimension=1) TypeEmbedding (embedding_size=50, dimension=2)

IdentifierEmbedding (embedding_size=1000, dimension=4) StringEmbedding (embedding_size=1000, dimension=4)

OperatorEmbedding (embedding_size=40, dimension=2)

Embedding Layers

GAT (in_channels=num_GAT_features, out_channels=num_GAT_features * 4, heads=4, dropout=0)

GAT (in_channels=num_GAT_features * 4, out_channels=128, heads=4, dropout=0.1)

GAT Layers

LSTM (input_size=128, hidden_size=128, num_layers=2, bidirectional=True, dropout=0.1)

LSTM Layers

Linear (input_size=256, output_size=64)

Full Connected Layer

Domain (input_size=64, output_size=2)

Output Layers (Linear)

BatchNorm (num_features=64)

Feasibility(input_size=64, output_size=2)

Jumps (input_size=64, output_size=max_tree_depth*3)
Stage (input_size=64, output_size=1)

HeuristicSign (input_size=64, output_size=2)
HeuristicValue (input_size=64, output_size=1)

Expression (input_size=64, output_size=2)

TDH:

SSPH:

SGH:

Figure 9: Layer architecture of neural networks in DSNN. Each neural network consists of embed-
ding layers for domains, types, identifiers, strings, and operators, followed by GAT layers for tree
feature extraction. LSTM layers provide sequential modeling for programs, with fully connected
layers combining the outputs. Various output layers handle domain identification for task detection,
feasibility judgment for search space pruning, tree jumps, stage prediction, heuristic constraint (sign
and value), and constraint on the type of rule’s head (expression or terminal) for search guidance.

2. Graph Feature Extraction: Next, we use a Graph Neural Network (GNN) to extract graph
features from each line of TAC code Drori et al. (2022); Wu et al. (2022). To adaptively
extract intricate details such as node types, graph attention (GAT) layers are applied after
the embedding layers Velickovic et al. (2017).

3. Sequential Feature Processing: We adopt Long Short-Term Memory (LSTM) networks to
capture the sequential features inherent in TAC Chen et al. (2021); Nye et al. (2020). Rec-
ognizing the equal importance of each TAC line, bidirectional LSTM layers are employed
following the GAT layers to enrich the contextual understanding Huang et al. (2015).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

4. Multi-Head Output: Finally, the processed data is channeled through multiple output
layers to prevent task interference and ensure clarity in results.

Figure 4 (right) illustrates using three neural network units arranged in series to construct the internal
coupling structure of DSNN. Labeling these neural networks with A, B, and C in order of their
sequence, Table 6 details the specific input features for each network: Neural network B receives its
input feature ”applied” from network A’s output feature ”jumps,” while network C’s input features
”applied” and ”next stage” are derived from the output features ”jumps” and ”next stage” of network
B. The output features of three neural network units are consistent and comparable, Table 7 presents
the output features of the neural networks.

It is necessary to note that the DSNNs without internal coupling structures in Table 3 contain only
neural network A.

Table 6: Input features of neural networks in DSNN. Each entry specifies the feature, its size, and the
neural networks it pertains to, along with a description of its role. These features contribute to the
neural network’s understanding of the syntax tree’s structure and semantics, aiding in the accurate
synthesis of programs.

Feature Feature
Size

Neural
Network

Signification

grounded 2 A, B, C The node is in a fully specified expression.
domain 1 A, B, C Domain of the subtask represented by the subtree

where the node is located.
root 2 A, B, C The tree representing the subtask is rooted at this node.

non-terminal 2 A, B, C The node is a non-terminal.
type 1 A, B, C Type of the node.

identifier 1 A, B, C Identifier of the node.
string 1 A, B, C The node contains a string as the immediate value.

number 1 A, B, C The node contains a number as the immediate value.
operator 1 A, B, C The node is an operator.

current stage 1 A, B, C Current CoL stage (valid when this node is grounded).
operand
position

3 A, B, C Placement of nodes in a binary operation tree (left
operand node, right operand node, operation node).

applied 1 B, C A rule is applied to the subtree rooted at this node (de-
rived from the output feature “jumps” of the previous
neural network).

next stage 1 C The CoL stage to advance to after applying the rule
(derived from the output feature “next stage” of the
previous neural network).

D SIGNAL CLIPPER

The Clipper, as illustrated in Figure 4 (left), caps signals that do not align with the DSNN guidance
to zero:

u2 =


0 if u1 > 0 and current rule doesn’t align with

the guidance and there exists another rule in
the search space that aligns with the guidance

u1 otherwise

(3)
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Table 7: Output features of neural networks in DSNN. These features provide comprehensive opti-
mizations for CoL DSL during program synthesis, including task detection, search space pruning,
and search guidance.

Feature Feature Size Neural
Network

Signification

domain 2 A, B, C Relevance of task domains to DSNN.
feasibility 2 A, B, C Feasibility of synthesizing the complete program.

jumps max tree depth*3 A, B, C The path from the tree’s root to the subtree’s root
where the rule is applied (jump left, right, or stop in
each step).

next stage 1 A, B, C The CoL stage to advance to after applying the rule.
heuristic

sign
2 A, B, C Sign of the rule’s heuristic value.

heuristic
value

1 A, B, C Rule’s heuristic value.

expression 2 A, B, C Type of rule’s head (expression or terminal).

D.1 A* SEARCH IN PROGRAM SYNTHESIS

During the exploration phase of program synthesis, we leverage the A* algorithm to perform the
heuristic search. This algorithm is renowned for its efficacy in discrete optimization tasks, utiliz-
ing heuristic guidance to navigate the search space effectively Hart et al. (1968). Each action or
decision is associated with a specific cost in this context. By evaluating the cumulative cost of ac-
tions taken so far and the estimated costs of future actions, A* seeks to determine the path with
the least overall cost. In our approach, heuristic values promoting forward progression are consid-
ered rewards. Therefore, we treat them as negative costs in calculations. Algorithm 1 illustrates the
implementation details.

Algorithm 1 Search Algorithm for DSL Program Synthesis
1: procedure A* SEARCH(initialPartialProgram, u2)
2: openSet← priority queue containing only the initial partial program
3: gScore[startPartialProgram]← 0 ▷ cost from start
4: fScore[startPartialProgram]← 0
5: while openSet ̸= ∅ do
6: currentProgram← openSet.pop() ▷ The partial program in openSet with lowest

fScore value
7: if currentProgram is complete program then
8: return Success
9: end if

10: for each neighbor of currentProgram do ▷ Neighbor is a program directly obtained
by applying a rule to the current program

11: tentativegScore← gScore[current]− u2[neighbor]
12: if tentativegScore < gScore[neighbor] then
13: cameFrom[neighbor]← current
14: gScore[neighbor]← tentativegScore
15: fScore[neighbor]← gScore[neighbor]− u2[neighbor]
16: if neighbor ̸∈ openSet then
17: openSet.add(neighbor)
18: end if
19: end if
20: end for
21: end while
22: return Failure
23: end procedure
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E IMPLEMENTATION TOOLCHAIN

To fully implement the CoL DSL and adapt it to NNFC, we choose to build COOL from the ground
up rather than extending existing DSL frameworks such as Xtext Bettini (2016) or Groovy King
(2020). We use C++ as the primary language to meet the execution efficiency requirements for
the numerous tree operations inherent in the DSL program synthesis process. For development ef-
ficiency, we utilize Lex Lesk & Schmidt (1975) and YACC Johnson et al. (1975) for syntax and
semantic parsing, respectively. The neural network components are implemented in Python, lever-
aging the PyTorch library Imambi et al. (2021) to support machine learning tasks effectively. Table 8
shows the detailed code effort involved in developing the different components of COOL across var-
ious programming languages.

Table 8: Code Effort in COOL. Components of COOL are developed across different programming
languages.

Language Lines Components

C++ 60k framework and CoL DSL solver
Python 3k DSNN

Lex 1k syntax parser
YACC 2k semantic parsers

F OPTIMIZATION STRATEGY

In practice, we observe that as the CoL length increases, the frequency of skipping stages rises.
While skipping can lead to shorter synthesis paths and improved efficiency, it may cause task failures
by omitting necessary stages. To manage this, we propose two strategies:

1. Gradient-Based Regulation: We employ gradient-based regulation, a widely used strategy
in program synthesis Cui & Zhu (2021); Liang et al. (2018); Chaudhuri et al. (2021). By
evaluating the slope or rate of change between consecutive stages, gradients help us make
dynamic adjustments to synthesis paths. In our approach, we regulate skipping by applying
a gradient to the heuristic values at each stage in the CoL. We encourage skipping when
the heuristic gradient from one stage to the next is positive. Conversely, if the gradient is
negative, we suppress skipping.

2. NNFC Regulation: Once we establish a feasible synthesis path, we can treat partial pro-
grams derived through skipping as infeasible. Then, we will utilize the feedback loop to
suppress unwarranted skipping actions. However, since these partial programs might still
contain feasible solutions, we need further investigation to understand and fully leverage
the potential impact of this data.

In our experiments, we prioritize accuracy by suppressing skipping behavior, ensuring essential
stages are included in synthesis paths.

G FUTURE WORK

In future work, we aim to enhance the capability of the COOL framework by exploring the imple-
mentation of CoL and NNFC in more complex scenarios, such as managing dependencies among
DSL libraries and object-oriented development. We plan to facilitate community collaboration by
developing more DSL libraries to expand COOL’s applications. Additionally, we are interested in
integrating COOL with language models. As these models evolve, ensuring ethical and accurate rea-
soning becomes increasingly crucial Jacovi & Goldberg (2020); Chen et al. (2022); Li et al. (2022).
The COOL framework, including CoL’s constraints on rule application and NNFC’s structured agent
interactions, helps to enhance reasoning faithfulness, preventing harmful reasoning logic. We hope
our work will serve as a reliable bridge for interaction and understanding between human cognitive
processes and language model reasoning.
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H COL DSL FOR RELATIONAL TASKS

We present only the specific code for the CoL DSL group, while the code for the DSL and DSL
(Heuristic) groups, referenced in Table 3, is not displayed. This omission is because their differ-
ences from the CoL DSL group are confined to their heuristic vectors. In both the DSL and DSL
(Heuristic) groups, the heuristic vectors have a dimension of 1. However, the DSL group employs a
fixed heuristic value of -1, whereas the DSL (Heuristic) group utilizes variable values. The experi-
mental codes are presented concisely, showcasing only the framework. Please refer to the attached
supplementary materials for the complete content.

//1 Separate Relations and Genders
expr:@(9){(a) is (b)s grandson}{

return:(a) is male & (a) is (b)s grandchild & (b) is (a)s
grandparent;↪→

}
...

//2 Reason Inverse Relations
expr:@(0,7,3){(a) is (b)s grandchild}{

if(this expr.exist subexpr{(b) is (a)s grandparent} == false){
return: (a) is (b)s grandchild & (b) is (a)s grandparent;

}
abort;

}
...

//3 Reason Indirect Relations
expr:@(0,0,5){(a) is (b)s sibling}{

placeholder:p1;
while(this expr.find subexpr{(p1) is (a)s sibling}){

if(this expr.exist subexpr{(p1) is (b)s sibling} == false
&& p1 != b){↪→

return: (a) is (b)s sibling & (p1) is (b)s sibling;
}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(p1) is (a)s parent}){

if(this expr.exist subexpr{(p1) is (b)s parent} == false){
return: (a) is (b)s sibling & (p1) is (b)s parent;

}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(p1) is (a)s pibling}){

if(this expr.exist subexpr{(p1) is (b)s pibling} ==
false){↪→

return: (a) is (b)s sibling & (p1) is (b)s pibling;
}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(p1) is (a)s grandparent}){

if(this expr.exist subexpr{(p1) is (b)s grandparent} ==
false){↪→

return: (a) is (b)s sibling & (p1) is (b)s grandparent;
}
p1.reset();

}
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p1.reset();
abort;

}
...

//4 Recombine Relations and Genders, Eliminate Irrelevant
Relations↪→

expr:@(0,0,0,8){(a) is (b)s ($relation)}{
//immediate family
placeholder:p1;
while(this expr.find subexpr{(a) is (b)s grandchild}){

if(this expr. exist subexpr{(a) is male}){
return: $relation == "grandson";

}
if(this expr.exist subexpr{(a) is female}){

return:$relation == "granddaughter";
}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(a) is (b)s child}){

if(this expr. exist subexpr{(a) is male}){
return: $relation == "son";

}
if(this expr.exist subexpr{(a) is female}){

return:$relation == "daughter";
}
p1.reset();

}
...
abort;

}
...
expr:@(0,0,0,10){a & ($b == c)}{

return:b == c;
}
...

I COL DSL FOR SYMBOLIC TASKS

// Common Transformations
expr:@(2,2,2,2,2){0+#a}{

return:a;
}
expr:@(2,2,2,2,2){#a+0}{

return:a;
}
...

// 1 Expand Square Terms
expr:@(5,0,0,0){(#?a + #?b)ˆ2}{

return:aˆ2+2*a*b+bˆ2;
}
expr:@(5,0,0,0){(#?a - #?b)ˆ2}{

return:aˆ2+(-2)*a*b+bˆ2;
}
expr:@(6,0,0,0){(#a*#b)ˆ2}{

return:aˆ2*bˆ2;
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}
...

// 2 Expand Bracketed Terms
expr:@(0,4,0,0,0){#?a-(#?b+#?c)}{

return:a-b-c;
}
expr:@(0,3.8,0,0,0){(#?b+#?c)*#?a}{

return:b*a+c*a;
}
...

// 3 Extract Coefficients
expr:@(0,0,5,0){$x*a}{

return:a*x;
}
expr:@(0,0,4.8,0){(immediate:a*$x)*(immediate:b*$x)}{

new:tmp = a*b;
return:tmp*xˆ2;

}
expr:@(0,0,4.6,0){$x*(a*$x)}{

return:a*xˆ2;
}
...

// 4 Re-Express Negative Coefficients
expr:@(0,0,0,3.5,0){#a-$x}{

placeholder:p1;
placeholder:p2;
if(x.exist subexpr{p1*p2}){

abort;
}
return:a+(-1)*x;

}
expr:@(0,0,0,3.7,0){#a-immediate:b*$x}{

new:tmp = 0 - b;
return:a+tmp*x;

}
...

//5 Arrange Terms in Descending Order, Combine Like Terms
expr:@(0,0,0,0,3){immediate:a*$x+immediate:b*$x}{

new:tmp = a+b;
return:tmp*x;

}
expr:@(0,0,0,0,2.8){a1*$x+a2*$xˆ2}{

return:a2*xˆ2+a1*x;
}
...

//6 Convert to Standard Form
expr:@(0,0,0,0,0,2.5){a*$xˆ2+b*x == #d}{

return: a*$xˆ2+b*x + 0 == d;

}
expr:@(0,0,0,0,0,2.5){b*$x == $d}{

if(d.exist subexpr{xˆ2}){
return: 0*xˆ2 + b*x + 0 == d;
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}else {
abort;

}
}
expr:@(0,0,0,0,0,-4){$a==$b}{

return:b==a;
}
...

//7 Apply Solution Formula
@(0,0,0,0,0,0,0,10){a*$xˆ2+b*x+c==0}{

if(bˆ2-4*a*c<0){
x="null";

}
else {

new:x1=(-b+(bˆ2-4*a*c)ˆ0.5)/(2*a);
new:x2=(-b-(bˆ2-4*a*c)ˆ0.5)/(2*a);
x={x1,x2};

}
};

J RELATIONAL TASKS AT DIFFICULTY LEVEL A

#load(family) // Load the CoL DSL library for Relational Tasks
new:relation = "";
// [Francisco]'s brother, [Wesley], recently got elected as a

senator. [Lena] was unhappy with her son, [Charles], and his
grades. She enlisted a tutor to help him. [Wesley] decided to
give his son [Charles], for his birthday, the latest version
of Apple watch.

↪→

↪→

↪→

↪→

// Ans: (Francisco) is (Lena)s brother
new:Lena = "Lena";
new:Charles = "Charles";
new:Wesley = "Wesley";
new:Francisco = "Francisco";
(Charles) is (Lena)s son & (Wesley) is (Charles)s father &

(Francisco) is (Wesley)s brother & (Francisco) is (Lena)s
($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";

// [Clarence] woke up and said hello to his wife, [Juanita].
[Lynn] went shopping with her daughter [Felicia]. [Felicia]'s
sister [Juanita] was too busy to join them.

↪→

↪→

// Ans: (Lynn) is (Clarence)s mother-in-law
new:Clarence = "Clarence";
new:Juanita = "Juanita";
new:Felicia = "Felicia";
new:Lynn = "Lynn";
(Juanita) is (Clarence)s wife & (Felicia) is (Juanita)s sister &

(Lynn) is (Felicia)s mother & (Lynn) is (Clarence)s
($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";
...
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K RELATIONAL TASKS AT DIFFICULTY LEVEL B

#load(family) // Load the CoL DSL library for Relational Tasks
new:relation = "";
// [Antonio] was happy that his son [Bernardo] was doing well in

college. [Dorothy] is a woman with a sister named [Tracy].
[Dorothy] and her son [Roberto] went to the zoo and then out
to dinner yesterday. [Tracy] and her son [Bernardo] had lunch
together at a local Chinese restaurant.

↪→

↪→

↪→

↪→

// Ans: (Roberto) is (Antonio)s nephew
new:Antonio = "Antonio";
new:Bernardo = "Bernardo";
new:Tracy = "Tracy";
new:Dorothy = "Dorothy";
new:Roberto = "Roberto";
(Bernardo) is (Antonio)s son & (Tracy) is (Bernardo)s mother &

(Dorothy) is (Tracy)s sister & (Roberto) is (Dorothy)s son &
(Roberto) is (Antonio)s ($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";

// [Bernardo] and his brother [Bobby] were rough-housing. [Tracy],
[Bobby]'s mother, called from the other room and told them to
play nice. [Aaron] took his brother [Bernardo] out to get
drinks after a long work week. [Tracy] has a son called
[Bobby]. Each day they go to the park after school. ans:
(Bobby) is (Aaron)s brother

↪→

↪→

↪→

↪→

↪→

new:Aaron = "Aaron";
new:Bernardo = "Bernardo";
new:Bobby = "Bobby";
new:Tracy = "Tracy";
(Bernardo) is (Aaron)s brother & (Bobby) is (Bernardo)s brother &

(Tracy) is (Bobby)s mother & (Bobby) is (Tracy)s son & (Bobby)
is (Aaron)s ($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";
...

L SYMBOLIC TASKS AT DIFFICULTY LEVEL A

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;
6*$xˆ2 == 3*x - 7;
x-->"#FILE(SCREEN)";
($x - 6)*(x + 3) == x;
x-->"#FILE(SCREEN)";
...

M SYMBOLIC TASKS AT DIFFICULTY LEVEL B

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;
$x*($x + 11) == 16*($x + 22);
x-->"#FILE(SCREEN)";
$x*(36*$x + 50) - 11*(19 - 30*$x) == $xˆ2;
x-->"#FILE(SCREEN)";
...
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N MULTIDOMAIN TASKS

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
#load(family) // Load the CoL DSL library for Relational Tasks
new:x = 1;
$xˆ2 - 4*$x == 6;
x --> "#FILE(SCREEN)";
...
new:relation = "";
// [Dolores] and her husband [Don] went on a trip to the

Netherlands last year. [Joshua] has been a lovely father of
[Don] and has a wife named [Lynn] who is always there for him.

↪→

↪→

// Ans: (Dolores) is (Lynn)s daughter-in-law
new:Lynn = "Lynn";
new:Joshua = "Joshua";
new:Don = "Don";
new:Dolores = "Dolores";
(Joshua) is (Lynn)s husband & (Don) is (Joshua)s son & (Dolores)

is (Don)s wife & (Dolores) is (Lynn)s ($relation);↪→

relation-->"#FILE(SCREEN)";
...

O PARTIAL PROGRAM AS NEURAL NETWORK INPUT

"codeTable": [
{

"boundtfdomain": "",
"grounded": false,
"operand1": {

"argName": "x",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": 0

},
"operand2": {

"argName": "2",
"argType": "number",
"changeable": 0,
"className": "",
"isClass": 0

},
"operator": {

"argName": "ˆ",
"argType": "other"

},
"result": {

"argName": "1418.4",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": 0

},
"root": false

},
...

]
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